87 research outputs found

    Defining phenotype, tropism, and retinal gene therapy using adeno-associated viral vectors (AAVs) in new-born Brown Norway rats with a spontaneous mutation in Crb1

    Get PDF
    Mutations in the Crumbs homologue 1 (CRB1) gene cause inherited retinal dystrophies, such as early-onset retinitis pigmentosa and Leber congenital amaurosis. A Brown Norway rat strain was reported with a spontaneous insertion-deletion (indel) mutation in exon 6 of Crb1. It has been reported that these Crb1 mutant rats show vascular abnormalities associated with retinal telangiectasia and possess an early-onset retinal degenerative phenotype with outer limiting membrane breaks and focal loss of retinal lamination at 2 months of age. Here, we further characterized the morphological phenotype of new-born and adult Crb1 mutant rats in comparison with age-matched Brown Norway rats without a mutation in Crb1. A significantly decreased retinal function and visual acuity was observed in Crb1 mutant rats at 1 and 3 months of age, respectively. Moreover, in control rats, the subcellular localization of canonical CRB1 was observed at the subapical region in Muller glial cells while CRB2 was observed at the subapical region in both photoreceptors and Muller glial cells by immuno-electron microscopy. CRB1 localization was lost in the Crb1 mutant rats, whereas CRB2 was still observed. In addition, we determined the tropism of subretinal or intravitreally administered AAV5-, AAV9- or AAV6-variant ShH10(Y445F) vectors in new-born control and Crb1 mutant rat retinas. We showed that subretinal injection of AAV5 and AAV9 at postnatal days 5 (P5) or 8 (P8) predominantly infected the retinal pigment epithelium (RPE) and photoreceptor cells; while intravitreal injection of ShH10(Y445F) at P5 or P8 resulted in efficient infection of mainly Muller glial cells. Using knowledge of the subcellular localization of CRB1 and the ability of ShH10(Y445F) to infect Muller glial cells, canonical hCRB1 and hCRB2 AAV-mediated gene therapy were explored in new-born Crb1 mutant rats. Enhanced retinal function after gene therapy delivery in the Crb1 rat was not observed. No timely rescue of the retinal phenotype was observed using retinal function and visual acuity, suggesting the need for earlier onset of expression of recombinant hCRB proteins in Muller glial cells to rescue the severe retinal phenotype in Crb1 mutant rats.Ophthalmic researc

    Do disinhibited eaters pay increased attention to food cues?

    Get PDF
    The Three Factors Eating Questionnaire's measure of disinhibited eating is a robust predictor of long-term weight gain. This experiment explored if disinhibited eaters display attentional bias to food cues. Participants (N = 45) completed a visual dot probe task which measured responses to food (energy dense and low energy foods) and neutral cues. Picture pairs were displayed either for a 100 ms or 2000 ms duration. All participants displayed attentional bias for energy dense food items. Indices of attentional bias were largest in disinhibited eaters. Attentional bias in disinhibited eaters appeared to be underpinned by facilitated attention

    Boundary condition model for the simulation of organic solar cells

    Get PDF
    (c) 2017. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/http://www.sciencedirect.com/science/article/pii/S1566119917302434Organic solar cells (OSCs) are promising photovoltaic devices to convert solar energy into electrical energy. Their many advantages such as lightweight, flexibility and low manufacturing costs are intrinsic to the organic/polymeric technology. However, because the performance of OSCs is still not competitive with inorganic solar cells, there is urgent need to improve the device performance using better designs, technologies and models. In this work, we focus on the developing an accurate physics-based model that relates the charge carrier density at the metal-organic boundaries with the current density in OSCs using our previous studies on single-carrier and bipolar diodes. The model for the boundary condition of the charge carrier density at the interfaces of OSCs follows a power-law function with the current density, both in dark and under illumination, and simulated current-voltage characteristics are verified with experimental results. The numerical simulations of the current-voltage characteristics of OSCs consider well-established models for the main physical and optical processes that take place in the device: light absorption and generation of excitons, dissociation of excitons into free charge carriers, charge transport, recombination and injection-extraction of free carriers. Our analysis provides important insights on the influence of the metal-organic interfaces on the overall performance of OSCs. The model is also used to explain the anomalous S-shape current-voltage curves found in some experimental data.This work was supported by Ministerio de Educación y Ciencia under research Grant FPU12/02712 and MINECO/FEDER under research Project MAT2016-76892-C3-3-R, and the Canada Research Chair program, NSERC ResEau strategic network and the NCE IC-IMPACTS

    Inhibition of Na+ and Ca2+ reabsorption by P2U-purinoceptors requires PKC but not Ca2+ signalling.

    Get PDF
    Contains fulltext : 24132___.PDF (publisher's version ) (Open Access

    Calbindin-D28K facilitates cytosolic calcium diffusion without interfering with Calcium signalling

    Get PDF
    Contains fulltext : 21613___.PDF (publisher's version ) (Open Access
    corecore